Proposed Temporary Warehouse and Open Storage of Construction Material with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Lot 207 in D.D. 84, Ta Kwu Ling, N.T.

Drainage Proposal

Appendix I

Proposed Temporary Warehouse and Open Storage of Construction Material with Ancillary Facilities for a Period of
3 Years and Associated Filling of Land at Lot 207 in D.D. 84. Ta Kwu Ling, N.T.

	_
Drainage	Pronosal

Ta	1. 1			•					
12	n	-Δ	Λt	•	n	nı	۵.	n	r
ıa	v		VI.	_	u		. $\overline{}$		L

1.	Intro	oduction	1
		Background	
		The Site	
		elopment Proposal	
		The Proposed Development	
		essment Criteria	
		ign Review of Existing Drainage System	
		clusion	
J.	COIII	CIUSIUII	_

List of Table

Table 1 - Key Development Parameters	2
Table 2– Design Return Periods under SDM	2

List of Figure

Figure 1 – Site Location Plan

Figure 2 - Existing Drainage Plan

Figure 3 – Existing Drainage System

Figure 4 – Catchment Plan

List of Appendix

Appendix A – Design Review of Existing Drainage System

Appendix B - Development Layout Plan

1. Introduction

1.1 Background

- 1.1.1 With reference to the approval on planning application of A/NE-TKL/695, in which the application seeks planning permission for proposed temporary open storage and warehouse for storage of timber and wooden parts for a period of 3 years at the development site.
- 1.1.2 This Drainage Proposal aim to discharge/fulfil the planning approval condition (c) and to support the development in drainage aspect.

1.2 The Site

- 1.2.1 The Development Site was situated beside a village road at Ta Kwu Ling, North Distract. It has an area of about 1,649 m². The existing site is fully paved. The site location plan is shown in **Figure 1**.
- 1.2.2 The existing ground level of the site is approx. +11.6 mPD and it is intended to maintain the same level at the proposed development site.
- 1.2.3 There is an existing 400 mm width channel at perimeter of development site. At the north of the site, beside the local village road and unused agricultural land, there is an existing channel and stream with size upto approx.. 2.2m width at downstream. Existing Drainage Plan and Site Photo of existing channel/stream are shown in **Figure 2** for reference.
- 1.2.4 Proposed Development Layout plan is shown in **Appendix B** for reference.

Page | 1 May-24

2. Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 1,649 m². The indicative development schedule is summarized in **Table 1** below for technical assessment purpose. The catchment plan is shown in **Figure 4**.

Proposed Development	
Total Site Area (m ²)	1,649
Paved Area (m ²)	1,649
Assume all proposed site area as paved	
area for assessment purpose	

Table 1 - Key Development Parameters

3. Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this DIA. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2- Design Return Periods under SDM

3.1.2 The village drainage system intended to collect runoff from the internal site. 1 in 10 years return period is adopted for the drainage design.

Page | 2 May-24

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within North District Rainfall Zone. Therefore, for 10 years return period, the following values are adopted.

a =
$$1157.7$$

b = 19.04
c = 0.597

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278 \text{CiA}$

where Q_p = peak runoff in m³/s C = runoff coefficient (dimensionless) i = rainfall intensity in mm/hr A = catchment area in km²

3. The run-off coefficient (C) of surface runoff are taken as follows:

Paved Area: C = 0.95
Unpaved Area: C = 0.35

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:
$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}} \right)$$

where,

V = velocity of the pipe flow (m/s)

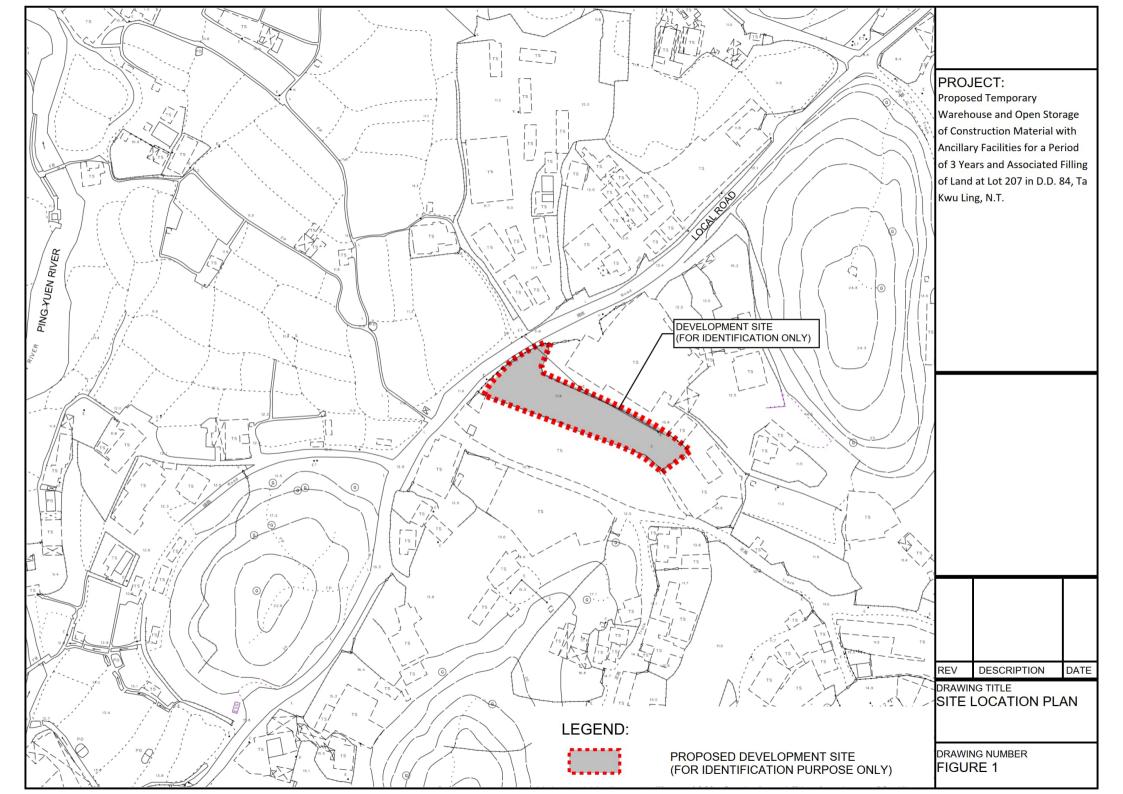
 S_f = hydraulic gradient k_f = roughness value (m)

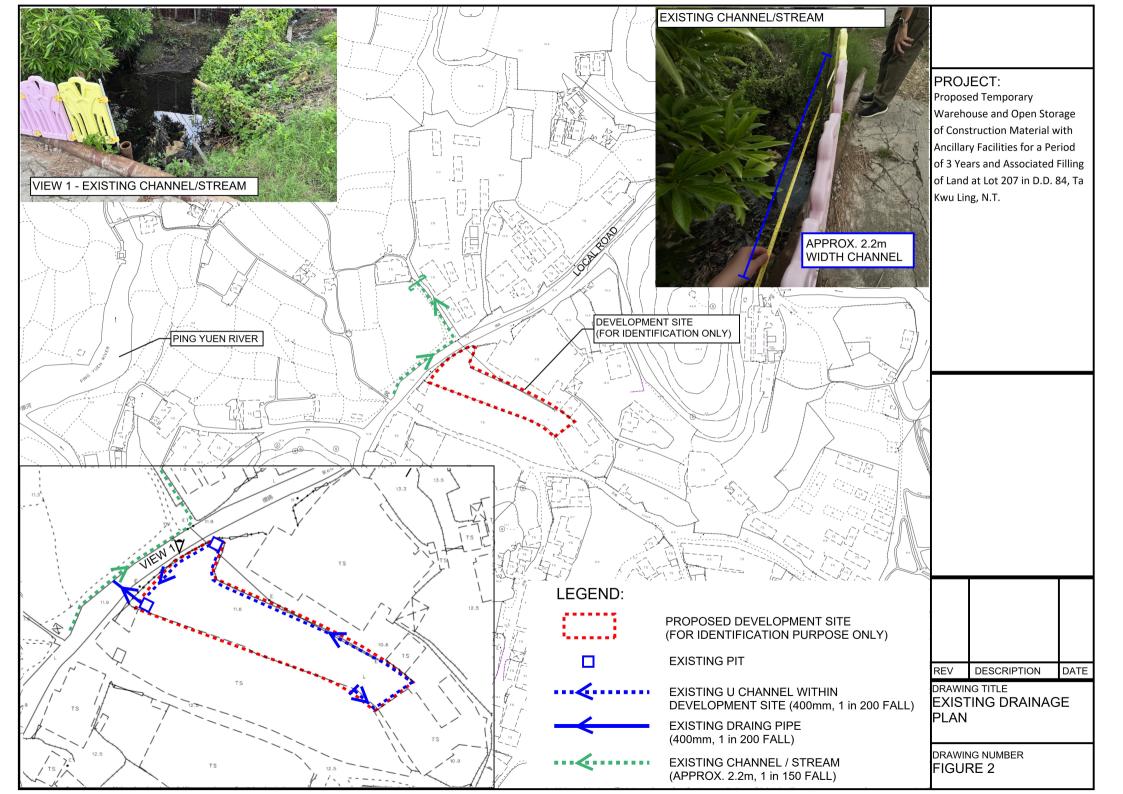
v = kinematics viscosity of fluid

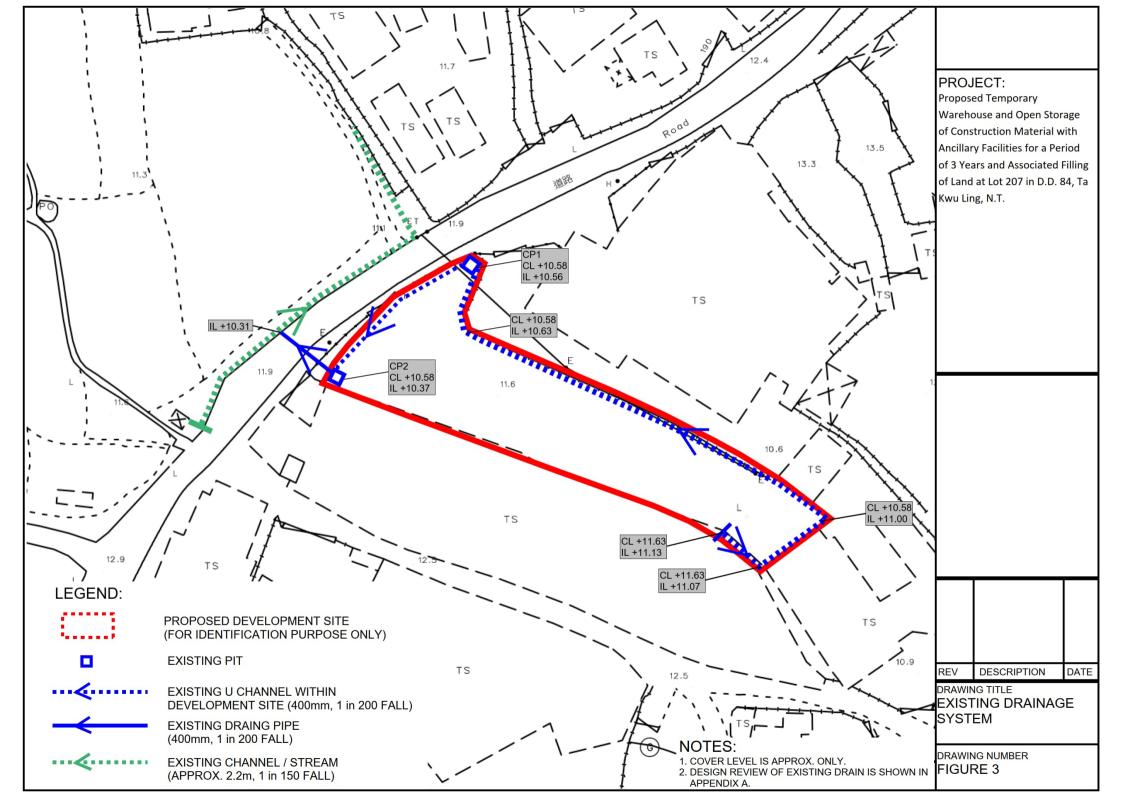
D = pipe diameter (m) R = hydraulic radius (m)

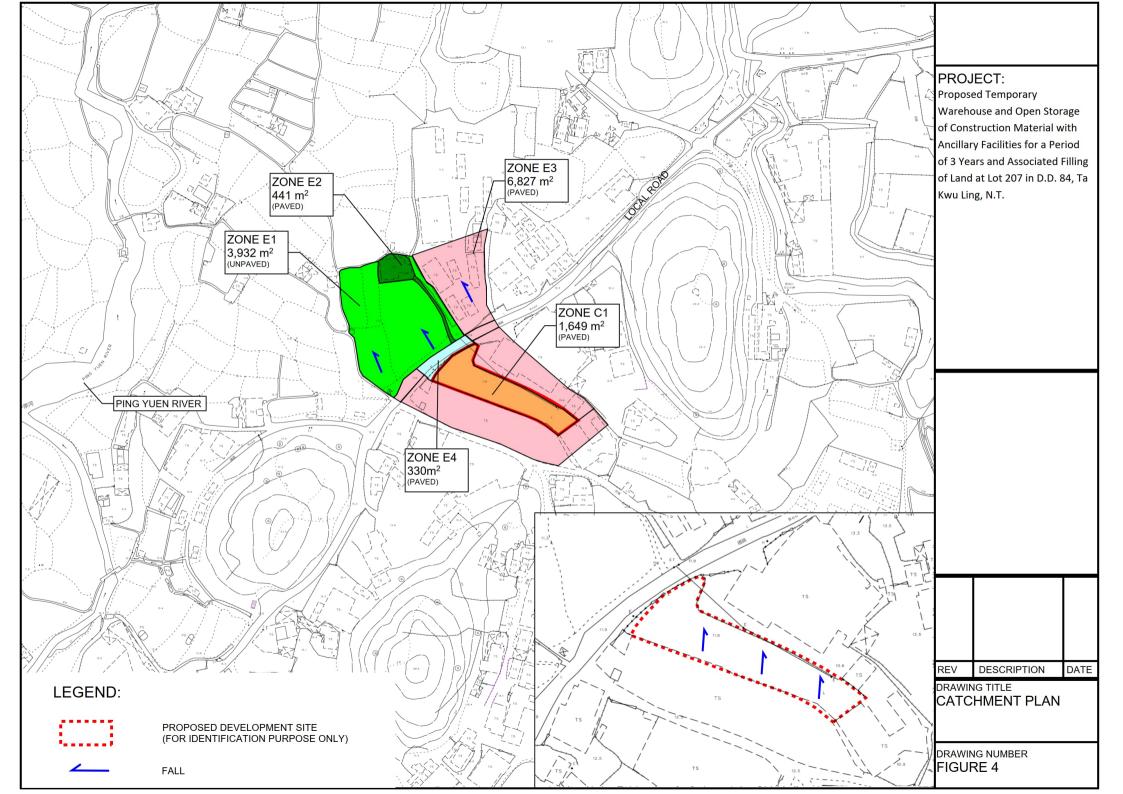
4. Design Review of Existing Drainage System

- 4.1.1 As the existing site area is fully paved, there is no additional runoff generated from the development site.
- 4.1.2 There is existing 400mm (W) (gradient 1 in 200) channels at the perimeter of the site as shown in **Figure 2**. The site runoff is discharging to an existing channel/stream (approx. 2.2m (W), gradient 1 in 150) at the north of the site.
- 4.1.3 The alignment, size and gradient of the existing drains are shown in **Figure 3**. The site and nearby area is generally flat. For capacity check of existing channel/stream, additional min. 15m area around the site (Zone E3 in Figure 4) was added to the catchment plan for assessment purpose. The catchment plan is shown in **Figure 4**.
- 4.1.4 The Design review of the existing 400mm channels are shown in **Appendix A**.


5. Conclusion


- 5.1.1 A drainage review has been conducted for the Proposed Development. As the existing site area is fully paved, there is no additional runoff generated from/drainage impact due to the development site.
- 5.1.2 The surface runoff from the Development Site will be collected by the existing drains and discharged to the existing channel/stream beside local road. The design review in Appendix A demonstrated that the utilization of existing drains is less than 70%.
- 5.1.2 With the existing drainage system, it is anticipated that there will be no significant drainage impact to the area after the implementation of the development.


End of Text -


Page | 5 May-24

FIGURES

APPENDIX

Appendix A - Design Review of Existing Drainage System

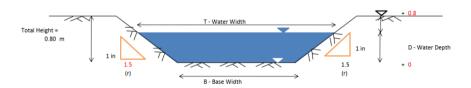
Existing U Channel 1 (Zone C1 + E4)

	4			
Runoff Estimation				
Design Return Period		1 in	10	years
Paved Area	330 + 1649 =		1979	(m2)
Unpaved Area			0	(m2)
Total Equivalent Area	1979 x 0.95 + 0 x 0.35 =		1880	(m2)
Rainfall Intensity, I *			173	mm/hr
Design Discharge Rate, Q	0.278 x 1880 x 173 / 1000000 =		0.091	m3/s

$$i = \frac{a}{(t_d + b)^6}$$

U Channel			
Channel Size		400	(mm)
Gradient	1 in	200	
Velocity		1.35	m/s
Capacity		0.193	m3/s

Utilization 0.091/0.193 = 46.85 % OK (less than 90%, for 10% siltation allowance)

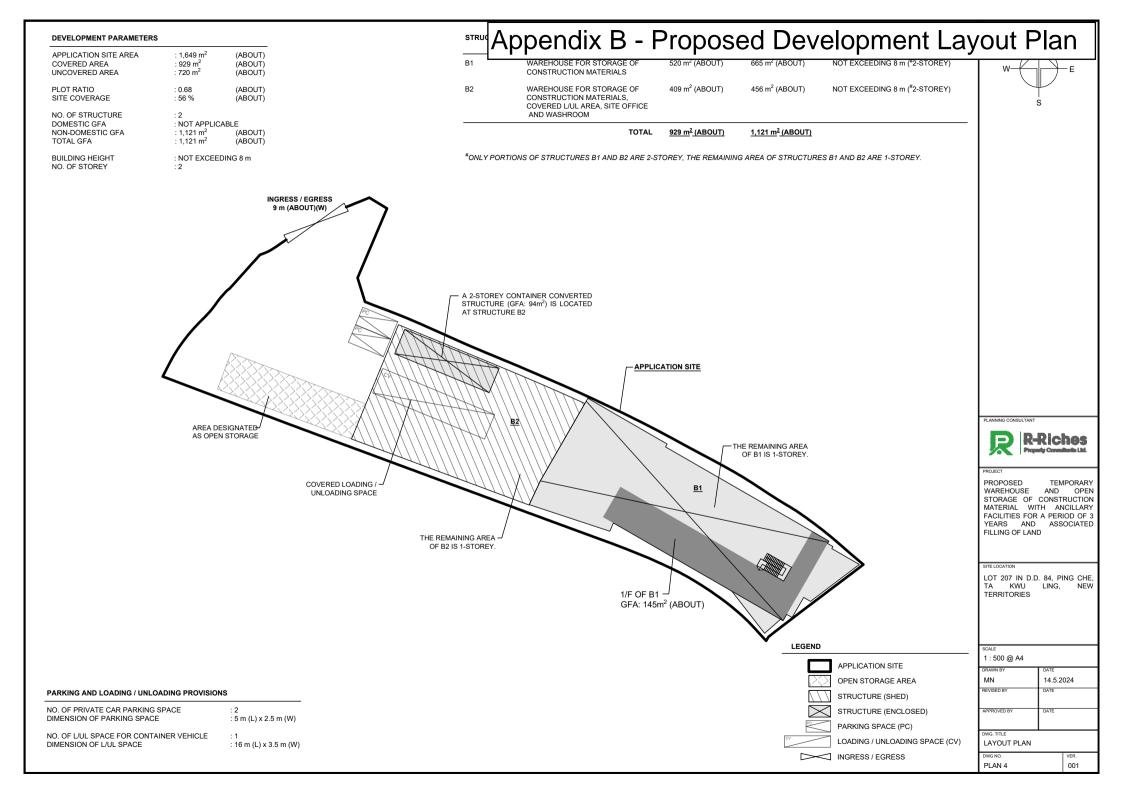

Existing Channel/ Stream (Zone C1 + E1 + E2 + E3 + E4)

Runoff Estimation				
Design Return Period		1 in	10	years
Paved Area	8806 =		8806	(m2)
Unpaved Area	3932 =		3932	(m2)
Total Equivalent Area	8806 x 0.95 + 3932 x 0.35 =		9742	(m2)
Rainfall Intensity, I *			173	mm/hr
Design Discharge Rate, Q	0.278 x 3932 x 173 / 1000000 =		0.470	m3/s

$$\star i = \frac{a}{(t_d + b)^6}$$

Manning's to estimate Capacity

Checking of Capacity of Trapezoidal Channel


Scenario & Case	Assumed Water Depth (m)	Water Width (m)	Base Width (m)	Area (m²)	Wetted Perimeter (m)	Hydralic Radius (m)	Manning's Roughness n	Friction Slope S _f (1 in)	Velocity (m/s)	Capacity
Δ	D ₁	T	В	A ₁	P ₁	R ₁	n	S _f	V ₁	\mathbf{Q}_1
	0.50	2.10	0.6	0.68	2.40	0.28	0.035	150	1.0006	0.675
	Utilitization	=	0.47 / 0.675		69.55	%	OK	(less than 90%	for 10% siltation al	lowance)

Design Review of Existing 400mm Pipe

Runoff Estimation			
Design Return Period	1 in	10	years
Paved Area*		1979	m2
Unpaved Area*		0	m2
Total Equivalent Area		1880	m2
Rainfall Intensity		173	mm/hr
Design Discharge Rate	(0.091	m3/s

Pipe Design			
Pipe Size		400	mm
Gradient	1 in	200	
Velocity		1.54	m/s
Capacity		0.193	m3/s

Utilization = 46.97 % OK (less than 90%, for 10% siltation allowance)

